Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Ferreira, Ricardo Felipe |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/104/104131/tde-07082019-103820/
|
Resumo: |
As cadeias estocásticas de memória ilimitada são uma generalização natural das cadeias de Markov, no caso em que as probabilidades de transição podem depender de todo o passado da cadeia. Estas cadeias, introduzidas, independentemente, por Onicescu e Mihoc em 1935 e Doeblin e Fortet em 1937, vêm recebendo uma atenção crescente na literatura probabilística, não só por serem uma classe mais rica que a classe das cadeias de Markov, como por suas capacidades práticas de modelagem de dados científicos em diversas áreas, indo da biologia à linguística. Neste trabalho, as utilizamos para modelar a interação entre sequências de disparos neuronais. Nosso objetivo principal é desenvolver novos resultados matemáticos acerca das cadeias de memória ilimitada. Inicialmente, estudamos as condições que garantem a existência e a unicidade de cadeias estacionárias compatíveis com uma família de probabilidades de transição descontínua. Em seguida, tratamos do entendimento da fenomenologia dos trens de disparos neuronais e usamos da informação dirigida para modelar a informação que flui de uma sequência de disparos a outra. Nesta ocasião, fixamos limites da concentração para estimação da informação dirigida. |