Detalhes bibliográficos
Ano de defesa: |
2004 |
Autor(a) principal: |
Hirayama, Vitor |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/3/3140/tde-27022005-164712/
|
Resumo: |
Este trabalho apresenta os resultados obtidos com o desenvolvimento de um sistema robusto como uma alternativa de reconhecimento da qualidade de vapor de álcool combustível e do poder calorífico do gás combustível GLP em um nariz eletrônico. Foram implementadas duas metodologias experimentais para a extração de atributos dos padrões de vapor de álcool combustível e de gás GLP. Na primeira abordagem de tratamento dos dados, foram usados um Sistema de Inferência Fuzzy (FIS), e dois algoritmos de treinamento de Redes Neurais Artificiais (RNA) para reconhecer padrões de vapor de álcool combustível: a Backpropagation e Learning Vector Quantization. A segunda abordagem para o tratamento dos dados foi desenvolver um sistema reconhecedor do poder calorífico do gás GLP robusto à perda aleatória de um dos sensores. Foram usados três sistemas. No primeiro foi implementada uma RNA para reconhecer todos os dados que simulavam a falha de um sensor aleatório. O resultado desse sistema foi de 97% de acertos. O segundo implementou sete RNAs treinadas com subconjuntos dos dados de entrada, tais que seis RNAs foram treinadas com um sensor diferente com falha; e a sétima RNA foi treinada com dados dos sensores sem falhas. O resultado desse sistema foi de 99% de acertos. O terceiro implementou uma Máquina de Comitê Estática Ensemble constituída de dez RNAs em paralelo para resolver o problema. O resultado foi de 97% de acertos. As RNAs tiveram melhores respostas que os FIS. Foram sugeridas algumas formas de implementação em hardware do sistema reconhecedor em sistemas pré-fabricados com DSPs e micro-controladores. |