Exportação concluída — 

Densidade local em grafos

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Fernandez, Luis Eduardo Zambrano
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45134/tde-15032019-114236/
Resumo: Nós consideramos o seguinte problema. Fixado um grafo H e um número real \\alpha \\in (0,1], determine o menor \\beta = \\beta(\\alpha, H) que satisfaz a seguinte propriedade: se G é um grafo de ordem n no qual cada subconjunto de [\\alpha n] vértices induz mais que \\beta n^2 arestas então G contém H como subgrafo. Este problema foi iniciado e motivado por Erdös ao conjecturar que todo grafo livre de triângulo de ordem n contém um subconjunto de [n/2] vértices que induz no máximo n^2 /50 arestas. Nosso resultado principal mostra que i) todo grafo de ordem n livre de triângulos e pentágonos contém um subconjunto de [n/2] vértices que induz no máximo n^2 /64 arestas, e ii) se G é um grafo regular de ordem n livre de triângulo, com grau excedendo n/3, então G contém um subconjunto de [n/2] vértices que induz no máximo n^2 /50 arestas. Se além disso G não é 3-cromático então G contém um subconjunto de [n/2] vértices que induz menos de n^2 /54 arestas. Como subproduto e confirmando uma conjectura de Erdös assintoticamente, temos que todo grafo regular de ordem n livre de triângulo com grau excedendo n/3 pode ser tornado bipartido pela omissão de no máximo (1/25 + o(1))n^2 arestas. Nós também fornecemos um contraexemplo a uma conjectura de Erdös, Faudree, Rousseau e Schelp.