Conjuntos fortemente nulos e fortemente magros

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Santana, Guilherme Trajano de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-26092019-071837/
Resumo: O presente trabalho tem como objetivo apresentar os conjuntos fortemente nulos e fortemente magros. Mais especicamente, iremos apresentar algumas aplicações e avaliar a independência de ZFC de armações envolvendo tais conjuntos. Com relação às aplicações, daremos alguns exemplos de conjuntos fortemente nulos e fortemente magros, estudaremos a aditividade do ideal formado pelos subconjuntos fortemente nulos da reta real, apresentaremos uma análise da relação entre a propriedade fortemente nulo e translações de subconjuntos da reta, mostraremos equivalências da Conjectura de Borel em espaços métricos, com a armação R-BC e com uma armação envolvendo jogos. Com relação a análise de independência de armações de ZFC, mostraremos que a Conjectura Dual de Borel é independente de ZFC e que a negação da Conjectura de Borel é consistente com ZFC.