Estudo de representações de imagens de múltiplos domínios a partir de aprendizado profundo não supervisionado e semi-supervisionado

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Cavallari, Gabriel Biscaro
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-08082022-084706/
Resumo: Sistemas atuais de visão computacional demonstram excelente desempenho em uma variedade de benchmarks, como detecção de objetos, reconhecimento e segmentação semântica de imagens. O treinamento dessas redes segue principalmente o paradigma de aprendizado supervisionado, em que são necessários muitos pares de entrada-saída para o treinamento. No entanto, grandes quantidades de dados rotulados manualmente são custosos e complexos de obter. Portanto, o aprendizado sem a necessidade de dados anotados é de grande importância para aproveitar a grande quantidade de dados visuais não rotulados geralmente disponíveis. Para enfrentar esse desafio, métodos de aprendizado não supervisionado e semi-supervisionado podem auxiliar na utilização de dados não rotulados para reduzir a dependência de grandes conjuntos de dados rotulados. Esta pesquisa tem como objetivo investigar diferentes arquiteturas e estratégias de treinamento que consideram uma situação em que se tem apenas dados não rotulados e dados rotulados limitados. Nossa hipótese é que essa estratégia melhora a generalização e a discriminação do espaço de características aprendido. Por meio de tarefas auxiliares, diferentes bases de dados e experimentos extensivos, concluímos que tanto o aprendizado semi-supervisionado quanto o auto-supervisionado seguido de ajuste fino geram representações discriminativas. Ainda, que essas representações tendem a ser mais robustas à ataques quando comparadas àquelas aprendidas em contextos puramente supervisionados.