Acoplamento cruzado de aril-hidrazinas e arenotióis catalisado por paládio: uma investigação computacional

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Kawafune, Wesley dos Santos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/46/46136/tde-09112021-093303/
Resumo: As aril-hidrazinas têm ganhado destaque nas reações de acoplamento cruzado catalisadas por paládio devido à reatividade, quimiosseletividade, amplo escopo e geração de subprodutos benignos - dinitrogênio e água - que possibilitam. No entanto, o mecanismo dessas reações é apenas vagamente conhecido, com poucos estudos experimentais ou computacionais. Nesta dissertação, a teoria do funcional de densidade e o modelo de amplitude de energia - conhecido em inglês por energy span model - foram empregados para propor um mecanismo factível para a reação de acoplamento cruzado carbono-enxofre de aril-hidrazinas e arenotióis catalisada por paládio. Os resultados para fenil-hidrazina, tiofenol e trimetilfosfina como modelo químico e para o nível de teoria M06-L demonstraram que a adição oxidativa de fenil-hidrazina ao paládio têm barreira de energia impeditiva. Os cálculos também sugeriram que a formação do intermediário com dois centros de paládio(II), bastante comum em propostas mecanísticas de trabalhos de síntese, também tem demanda proibitiva de energia. Desse modo, a reação deve seguir um caminho alternativo. Foi proposto que a fenil-hidrazina pode ser oxidada a cis- ou trans-fenildiazeno, e que o trans-fenildiazeno reage com um intermediário n2-peroxidopaládio(II) antes de a ativação da ligação C-N acontecer. A frequência de renovação - conhecida em inglês por turnover frequency - e a energia de ativação calculadas para esse mecanismo são coerentes com as condições experimentais. A reação teórica de acoplamento cruzado carbono-carbono de fenil-hidrazina e clorobenzeno catalisada por paládio também foi investigada, mas, nesse caso, o perfil de energia mostrou que o mecanismo estudado não é plausível. Esperava-se que a barreira de adição oxidativa fosse a mais alta, mas, no caminho de menor energia, a etapa de protonólise da ligação entre Pd-Cl é a mais proibitiva. A frequência de renovação calculada a partir do perfil de energia é praticamente nula e a energia de ativação é bastante alta, sugerindo que é improvável que essa reação seja catalisada segundo o mecanismo proposto.