Structural, functional and dynamical properties of a lognormal network of bursting neurons

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Carvalho, Milena Menezes
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
CA3
Link de acesso: http://www.teses.usp.br/teses/disponiveis/76/76131/tde-25052017-110738/
Resumo: In hippocampal CA1 and CA3 regions, various properties of neuronal activity follow skewed, lognormal-like distributions, including average firing rates, rate and magnitude of spike bursts, magnitude of population synchrony, and correlations between pre- and postsynaptic spikes. In recent studies, the lognormal features of hippocampal activities were well replicated by a multi-timescale adaptive threshold (MAT) neuron network of lognormally distributed excitatory-to-excitatory synaptic weights, though it remains unknown whether and how other neuronal and network properties can be replicated in this model. Here we implement two additional studies of the same network: first, we further analyze its burstiness properties by identifying and clustering neurons with exceptionally bursty features, once again demonstrating the importance of the lognormal synaptic weight distribution. Second, we characterize dynamical patterns of activity termed neuronal avalanches in in vivo CA3 recordings of behaving rats and in the model network, revealing the similarities and differences between experimental and model avalanche size distributions across the sleep-wake cycle. These results show the comparison between the MAT neuron network and hippocampal readings in a different approach than shown before, providing more insight into the mechanisms behind activity in hippocampal subregions.