Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
DORNELLES, Leonardo Dalla Porta |
Orientador(a): |
SILVA, Mauro Copelli Lopes da |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Programa de Pos Graduacao em Fisica
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/18384
|
Resumo: |
Avalanches neuronais, assim como oscilações e sincronização, são padrões de atividade espontânea observados em redes neuronais. O conceito de avalanches neuronais foi concebido na última década. Esse padrão de atividade tem distribuições de tamanhos P(s) e durações P(d) invariantes por escala, i.e., obedecem relações do tipo lei de potência P(s) ∼ s −τ, com expoente τ ≃ 3/2, e P(d) ∼ d−τt, com expoente τt ≃ 2, respectivamente. Essas propriedades são compatíveis com a ideia de que o cérebro opera em um regime crítico. A partir dessas constatações, muitos estudos teóricos e experimentais reportaram os potenciais benefícios de um cérebro operando na criticalidade, como por exemplo a máxima sensibilidade aos estímulos sensoriais, máxima capacidade de informação e transmissão e uma ótima capacidade computacional. Modelos da classe de universalidade de percolação direcionada (DP) têm sido amplamente utilizados para explicar a estatística invariante por escala das avalanches neuronais. Porém estes modelos não levam em consideração a dinâmica dos neurônios inibitórios e, além disso, como apresentam uma transição de fase entre um estado absorvente e uma fase ativa, torna-se difícil conciliar o modelo com correlações temporais de longo alcance que são observadas experimentalmente em diferentes escalas espaciais. Neste contexto, um novo modelo computacional (CROs, do original em inglês Critical Oscillations) surgiu na literatura (Poil et al., J. Neurosci., 32 9817, 2012), incluindo neurônios inibitórios e buscando conciliar correlações temporais com avalanches neuronais. Neste modelo não há uma fase absorvente, e uma suposta transição de fases ocorre entre uma fase ativa e outra com oscilações coletivas. Devido à ausência de uma fase absorvente, avalanches neuronais são definidas comparando-se a atividade instantânea da rede com um limiar que depende da mediana da atividade total. Justamente na linha crítica do espaço de parâmetros, quando há uma balanço entre excitação e inibição neuronal, avalanches neuronais invariantes por escala são observadas juntamente com correlações temporais de longo alcance (ruído 1/ f). No presente trabalho, um estudo mais profundo a respeito dos resultados reportados para o modelo CROs foi realizado. As oscilações neuronais mostraram-se robustas para diferentes tamanhos de rede, e observamos que a dinâmica local reflete a dinâmica oscilatória global da rede. Correlações temporais de longo alcance foram observadas (num intervalo de escalas temporais) através da técnica de Detrended Fluctuation Analysis, sendo robustas perante modificações no tamanho da rede. O resultado foi confirmado pela análise direta do espectro, que apresentou decaimento do tipo 1/ f numa determinada faixa de frequências. O diagrama de fases do modelo mostrou-se robusto em relação ao tamanho da rede, mantendo-se o alcance das interações locais. Entretanto, os resultados mostraram-se fortemente dependentes do limiar utilizado para detecção das avalanches neuronais. Por fim, mostramos que distribuições de durações de avalanches são do tipo lei de potência, com expoente τt ≃ 2. Este resultado é inédito e o valor encontrado coincide com o expoente crítico da classe de universalidade de DP na dimensão crítica superior. Em conjunto, nossos resultados fornecem mais evidências de que o modelo CROs de fato apresenta uma transição de fases. |