Ações de p-grupos sobre produto de esferas, co-homologia dos grupos virtualmente cíclicos (\'Z IND.a\' X| \'Z IND. b\' )X| Z e [\'Z IND.a\' X| (\'Z IND.b\' X \'Q IND.2 POT. i\' )] X| Z e cohomologia de Tate

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Soares, Marcio de Jesus
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-10102008-011126/
Resumo: Neste trabalho inicialmente estudamos o rank da co-homologia do espaço dos pontos fixos de uma \'Z IND.p\' - ação semilivre sobre espaços X~p \' S POT. n\' x \'S POT.n\' e X~p \'S POT.n\' x \'S POT.n\' x \'S POT.n\' , com n>0. Em seguida, estudamos uma extensão para ações de p-grupos sobre espaços X~p \'S POT.n\' X \'S POT.m\', com 0< n \'< OU =\' m. Como parte do material utilizado demos uma descrição do diferencial d1 de uma seqüência espectral que converge para co-homologia equivariante de Tate, bem como uma versão da Fórmula de Künneth para a co-homologia equivariante de Tate. Na parte final, motivado pelo problemas de descrição de espaços de órbita de ações de grupos infinito, calculamos as co-homologias dos grupos virtualmente cíclicos (\'Z IND.a\' X| \' Z IND. b\' )X| Z e [\'Z POT.a\' X|(\'Z IND.b\' X \'Q IND. 2 POT.i\') ]X| Z