Detalhes bibliográficos
Ano de defesa: |
2012 |
Autor(a) principal: |
Zanoni, Fábio Doro |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/3/3152/tde-23032012-114741/
|
Resumo: |
Este trabalho apresenta o estudo e a implementação de um sistema de navegação em tempo-real utilizado para estimar a posição, a velocidade e a atitude de um veículo submarino autônomo. O algoritmo investigado é o do Filtro de Kalman Estendido. Este filtro é freqüentemente usado para realizar a fusão de dados obtidos de diferentes sensores, em uma estimativa estatisticamente ótima, quando se respeita algumas condições. Neste trabalho, fez se a fusão entre os seguintes sensores: unidade de navegação inercial do tipo strapdown, sensor acústico de posicionamento, profundímetro, sensor de velocidade de efeito Doppler e uma bússola. Para a aplicação embarcada do Filtro de Kalman, faz-se necessário o seu desenvolvimento em tempo real. Conseqüentemente, este trabalho apresenta o estudo das principais características de um sistema de tempo real. Para desenvolver o código em C utilizou-se de algumas funções do Matlab com a finalidade de se tentar minimizar os erros de implementação do filtro. Além disto, para facilitar a implementação e respeitar os critérios de sistemas de tempo real utilizou-se de um sistema operacional, C/OS-II que possibilita aplicar sistemas com multiprocessos e utilizar semáforos para o gerenciamento do EKF, além disto, foram utilizadas normas de programação, MISRAC, para padronizar o código e aumentar a sua confiabilidade. São apresentadas também a modelagem cinemática, a metodologia e as ferramentas computacionais utilizadas para o filtro. Com base nas simulações e nos ensaios de campo executados on-line, observou-se que os filtros projetados para se estimar a atitude e a posição do veículo obtiveram bons desempenhos, além disto, foi possível verificar a convergência dos EKFs. Para estas simulações e ensaios, foram também estudados casos de situações adversas como, por exemplo, uma falha no sensor de referência de posição, sendo que para esta situação, o EKF de posição e velocidade obteve resultados satisfatórios. |