Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
Paiva, Jônatas Lopes de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-11042016-105926/
|
Resumo: |
Imagens digitais são utilizadas para diversas finalidades, variando de uma simples foto com os amigos até a identificação de doenças em exames médicos. Por mais que as tecnologias de captura de imagens tenham evoluído, toda imagem adquirida digitalmente possui um ruído intrínseco a ela que normalmente é adquirido durante os processo de captura ou transmissão da imagem. O grande desafio neste tipo de problema consiste em recuperar a imagem perdendo o mínimo possível de características importantes da imagem, como cantos, bordas e texturas. Este trabalho propõe uma abordagem baseada em um Algoritmo Genético Híbrido (AGH) para lidar com este tipo de problema. O AGH combina um algoritmo genético com alguns dos melhores métodos de supressão de ruídos em imagens encontrados na literatura, utilizando-os como operadores de busca local. O AGH foi testado em imagens normalmente utilizadas como benchmark corrompidas com um ruído branco aditivo Gaussiano (N; 0), com diversos níveis de desvio padrão para o ruído. Seus resultados, medidos pelas métricas PSNR e SSIM, são comparados com os resultados obtidos por diferentes métodos. O AGH também foi testado para recuperar imagens SAR (Synthetic Aperture Radar), corrompidas com um ruído Speckle multiplicativo, e também teve seus resultados comparados com métodos especializados em recuperar imagens SAR. Através dessa abordagem híbrida, o AGH foi capaz de obter resultados competitivos em ambos os tipos de testes, chegando inclusive a obter melhores resultados em diversos casos em relação aos métodos da literatura. |