Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
Barbieri, Fabio |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/3/3139/tde-01072021-111725/
|
Resumo: |
In this work, we study the stochastic multi-period optimal control for discrete-time linear systems subject to multiplicative noises. Initially, we consider a multi-period mean-variance trade-off performance criterion for the finite-horizon case with and without constraints, and then, its infinite-horizon case with the long-run as well as the discount factor criteria. We adopt the mean-field approach to tackle the problems and get their solutions in terms of a set of two generalised coupled algebraic Riccati equations (GCARE for short). For the finite-horizon case, we derive the optimal control law for a general multi-period mean-variance problem and obtain the optimal control strategy for the constrained problems using the Lagrangian multipliers approach. From the general unrestricted result, we obtain a sufficient condition for a closed-form solution for one of the constrained problems considered in this work. For the infinite-horizon case, we establish sufficient conditions for the existence of the maximal solution, necessary and sufficient conditions for the existence of the mean-square stabilising solution to the GCARE, and derive the optimal control laws for the discounted and long-run problems. When particularised to the portfolio selection problem, we show that our results match some of the results available in the literature. A numerical example illustrates the obtained optimal controls for the multi-period portfolio selection problem in which is desired to optimise the sum of the mean-variance trade-off costs of a portfolio against a benchmark along the time. |