Detalhes bibliográficos
Ano de defesa: |
1994 |
Autor(a) principal: |
Carvalheiro, Fabio Henrique |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://teses.usp.br/teses/disponiveis/45/45132/tde-20220712-114614/
|
Resumo: |
Arnborg (1985) e robertson/seymour (1986) introduziram, de modo independente, um conceito que se mostra uma boa medida da complexidade de um grafo g: dimensao de g (arnborg) ou tree-width de g (robertson, seymour). O primeiro autor apresenta um paradigma para desenvolver algoritmos polinomias, quando restritos a grafos com dimensao limitada para diversos problemas np-dificeis. Os outros utilizam o conceito de tree-width para resolver a conjectura well-quasi-ordering de k. Wagner e apresentar um algoritmo polinomial para o problema dos k caminhos disjuntos. O conceito de tree-width foi aproveitado por bodlander para paralelizar o paradigma de arnborg e mostrar que varios problemas np-dificeis, quando restritos a grafos com tree-width limitada, estao na classe nc. Neste trabalho apresentamos o paradigma de arnborg, generalizado e melhor formalizado, juntamente com sua aplicacao a quatro problemas np-completos, rigorosamente analisados: conjunto estavel maximo, clique maximo, coloracao minima e circuito hamiltoniano. Em seguida fazemos uma demonstracao construtiva (original) da equivalencia entre dimensao e tree-width de um grafo. Por ultimo, estudamos o problema de se determinar a dimensao (tree-width) de um dado grafo e apresentamos algumas classes de grafos com dimensao (tree-width) limitada |