Modelagem estatística de extremos espaciais com base em processos max-stable aplicados a dados meteorológicos no estado do Paraná

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Olinda, Ricardo Alves de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/11/11134/tde-17092012-103936/
Resumo: A maioria dos modelos matemáticos desenvolvidos para eventos raros são baseados em modelos probabilísticos para extremos. Embora as ferramentas para modelagem estatística de extremos univariados e multivariados estejam bem desenvolvidas, a extensão dessas ferramentas para modelar extremos espaciais integra uma área de pesquisa em desenvolvimento muito ativa atualmente. A modelagem de máximos sob o domínio espacial, aplicados a dados meteorológicos é importante para a gestão adequada de riscos e catástrofes ambientais nos países que tem a sua economia profundamente dependente do agronegócio. Uma abordagem natural para tal modelagem é a teoria de extremos espaciais e o processo max-stable, caracterizando-se pela extensão de dimensões infinitas da teoria de valores extremos multivariados, podendo-se então incorporar as funções de correlação existentes na geoestatística e consequentemente, verificar a dependência extrema por meio do coeficiente extremo e o madograma. Neste trabalho descreve-se a aplicação de tais processos na modelagem da dependência de máximos espaciais de precipitação máxima mensal do estado do Paraná, com base em séries históricas observadas em estações meteorológicas. Os modelos propostos consideram o espaço euclidiano e uma transformação denominada espaço climático, que permite explicar a presença de efeitos direcionais, resultantes de padrões meteorológicos sinóticos. Essa metodologia baseia-se no teorema proposto por De Haan (1984) e nos modelos de Smith (1990) e de Schlather (2002), verifica-se também o comportamento isotrópico e anisotrópico desses modelos via simulação Monte Carlo. Estimativas são realizadas através da máxima verossimilhança pareada e os modelos são comparados usando-se o Critério de Informação Takeuchi. O algoritmo utilizado no ajuste é bastante rápido e robusto, permitindo-se uma boa eficiência computacional e estatística na modelagem da precipitação máxima mensal, possibilitando-se a modelagem dos efeitos direcionais resultantes de fenômenos ambientais.