Detalhes bibliográficos
Ano de defesa: |
2010 |
Autor(a) principal: |
Schimit, Pedro Henrique Triguis |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/3/3139/tde-05122011-153541/
|
Resumo: |
Estuda-se o espalhamento de doenças contagiosas utilizando modelos suscetível-infectado-recuperado (SIR) representados por equações diferenciais ordinárias (EDOs) e por autômatos celulares probabilistas (ACPs) conectados por redes aleatórias. Cada indivíduo (célula) do reticulado do ACP sofre a influência de outros, sendo que a probabilidade de ocorrer interação com os mais próximos é maior. Efetuam-se simulações para investigar como a propagação da doença é afetada pela topologia de acoplamento da população. Comparam-se os resultados numéricos obtidos com o modelo baseado em ACPs aleatoriamente conectados com os resultados obtidos com o modelo descrito por EDOs. Conclui-se que considerar a estrutura topológica da população pode dificultar a caracterização da doença, a partir da observação da evolução temporal do número de infectados. Conclui-se também que isolar alguns infectados causa o mesmo efeito do que isolar muitos suscetíveis. Além disso, analisa-se uma estratégia de vacinação com base em teoria dos jogos. Nesse jogo, o governo tenta minimizar os gastos para controlar a epidemia. Como resultado, o governo realiza campanhas quase-periódicas de vacinação. |