Detalhes bibliográficos
Ano de defesa: |
2012 |
Autor(a) principal: |
Souza, Juliana Pereira de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/82/82131/tde-15022013-142541/
|
Resumo: |
Com a crescente utilização de imagens médicas na prática clínica, torna-se necessária a introdução de tecnologias que garantam o armazenamento, indexação e recuperação eficaz dessas imagens. O sistema de recuperação de imagens médicas baseada em conteúdo (S-CBIR) compõe a base de tecnologias computacionais que oferecem aos usuários médicos aplicativos para apoio ao diagnóstico, sendo capaz de responder a consultas por similaridade por meio de características pictóricas extraídas das imagens médicas. Embora as pesquisas em S-CBIR tenham iniciado há quase duas décadas, atualmente existe uma discrepância em relação à quantidade de trabalhos publicados na literatura e os sistemas que, de fato, foram implementados e avaliados. Além disso, muitos protótipos vêm sendo discutidos, mas até o final da escrita desta tese, não foram encontradas evidências de que algum deles esteja disponível comercialmente. Essa limitação é conhecida pela comunidade científica da área por gap de aplicação. Em geral, isso ocorre devido à dificuldade dessas aplicações em superar alguns desafios, como a divergência entre os resultados obtidos automaticamente pelo sistema e aqueles esperados pelos médicos (gap semântico), entre outros gap. Outros fatores também podem ser relatados, como a tendência da não utilização de modelos de qualidade sistematizados para o desenvolvimento dos sistemas, e a carência de modelos que sejam específicos no domínio de aplicação. Com base nesses desafios e em boas práticas de métodos, técnicas e ferramentas da Engenharia de Software, esta tese apresenta um Modelo de Qualidade para melhorias de S-CBIR (MQ-SCBIR), que tem por objetivo apoiar o desenvolvimento e avaliação de S-CBIR, a partir de diretrizes para aumentar o nível de qualidade, buscando a superação do gap de aplicação. O MQ-SCBIR foi construído com base em: evidências adquiridas por meio de uma revisão sistemática e pesquisa empírica sobre como esses sistemas vêm sendo desenvolvidos e avaliados na literatura e na prática; resultados da avaliação de um S-CBIR baseados em testes heurísticos em um ambiente real; modelos bem estabelecidos, como o Capability Maturity Model Integration e Melhoria de Processo do Software Brasileiro; e em experiências pessoais. O uso do MQ-SCBIR pode trazer benefícios para as organizações desenvolvedoras, como a redução da complexidade no desenvolvimento, incluindo a garantia de implementação de boas práticas de qualidade de software e práticas específicas para a superação das limitações de S-CBIR durante o processo de desenvolvimento. |