Detalhes bibliográficos
Ano de defesa: |
2004 |
Autor(a) principal: |
Sponchiado, Rodrigo Carvalho |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/43/43134/tde-24022014-145541/
|
Resumo: |
A Eletrodinâmica Estocástica é uma combinação da Eletrodinâmica Clássica e a hipótese adicional de que existem campos eletromagnéticos aleatórios, independentes da temperatura, denominados radiação de ponto-zero ou flutuações do vácuo, responsáveis pelo surgimento de certas propriedades peculiares dos sistemas microscópicos, geralmente descritas pela Mecânica Quântica. Diversos novos resultados da teoria são apresentados nesse trabalho. No capítulo 1, é feita uma breve introdução aos principais conceitos e pressupostos da Eletrodinâmica Estocástica, necessários para melhor compreensão dos capítulos seguintes. No capítulo 2, a atuação dos campos do vácuo no indutor de um circuito elétrico simples é estudada. Conclui-se que deve existir um tipo de ruído na voltagem do circuito, adicional ao ruído de Nyquist-Johnson, que pode ser medido dependendo da magnitude de certos parâmetros do circuito e sob certas condições de temperatura. No capítulo 3, é estudado o comportamento de uma partícula eletrizada em um potencial metaestável, com uma barreira de potencial, sujeita às flutuações da radiação térmica e de ponto-zero. Mostra-se que, mesmo à temperatura muito baixa (T -> 0), as flutuações do vácuo ainda são capazes de promover o escape da partícula através da barreira de potencial. A Mecânica Quântica atribui o fenômeno ao tunelamento da partícula através da barreira. Um conjunto de dados experimentais são analisados e observa-se que a descrição da Eletrodinâmica Estocástica produz um excelente acordo com eles. No capítulo 4, é mostrado que os formalismos de Heisenberg e Schrodinger da Mecânica Quântica deixam de ser equivalentes quando se leva em conta os campos do vácuo nos cálculos. Dirac foi o primeiro a apontar essa não equivalência para casos da Eletrodinâmica Quântica Relativísitica. Um exemplo bem mais simples é apresentado, o oscilador harmônico eletrizado, em interação com o campo eletromagnético do vácuo. |