Modelos numéricos aplicados à análise viscoelástica linear e à otimização topológica probabilística de estruturas bidimensionais: uma abordagem pelo Método dos Elementos de Contorno

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Oliveira, Hugo Luiz
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/18/18134/tde-27042017-093145/
Resumo: O presente trabalho trata da formulação e implementação de modelos numéricos baseados no Método dos Elementos de Contorno (MEC). Inspirando-se em problemas de engenharia, uma abordagem multidisciplinar é proposta como meio de representação numérica mais realista. Há materiais de uso corrente na engenharia que possuem resposta dependente do tempo. Nesta tese os fenômenos dependentes do tempo são abordados por meio da Mecânica Viscoelástica Linear associada a modelos reológicos. Neste trabalho, se apresenta a dedução do modelo constitutivo de Maxwell para ser utilizado via MEC. As equações deduzidas são verificadas em problemas de referência. Os resultados mostram que a formulação deduzida pode ser utilizada para representar estruturas compostas, mesmo em casos envolvendo uma junção entre materiais viscoelásticos e não viscoelásticos. Adicionalmente as formulações apresentadas se mantém estáveis na presença de fissuras de domínio e bordo. Verifica-se que a formulação clássica dual pode ser utilizada para simular o comportamento de fissuras com resposta dependente do tempo. Essa constatação serve de base para maiores investigações no campo da Mecânica da Fratura de materiais viscoelásticos. Na sequência, mostra-se como o MEC pode ser aliado a conceitos probabilísticos para fazer estimativas de comportamentos a longo prazo. Estas estimativas incluem as incertezas inerentes nos processos de engenharia. As incertezas envolvem os parâmetros materiais, de carregamento e de geometria. Por meio do conceito de probabilidade de falha, os resultados mostram que as incertezas relacionadas às estimativas das cargas atuantes apresentam maior impacto no desempenho esperado a longo prazo. Esta constatação serve para realizar estudos que colaborem para a melhoria dos processos de concepção estrutural. Outro aspecto de interesse desta tese é a busca de formas otimizadas, por meio da Otimização Topológica. Neste trabalho, um algoritmo alternativo de otimização topológica é proposto. O algoritmo é baseado no acoplamento entre o Método Level Set (MLS) e o MEC. A diferença entre o algoritmo aqui proposto, e os demais presentes na literatura, é forma de obtenção do campo de velocidades. Nesta tese, os campos normais de velocidades são obtidos por meio da sensibilidade à forma. Esta mudança torna o algoritmo propício a ser tratado pelo MEC, pois as informações necessárias para o cálculo das sensibilidades residem exclusivamente no contorno. Verifica-se que o algoritmo necessita de uma extensão particular de velocidades para o domínio a fim de manter a estabilidade. Limitando-se a casos bidimensionais, o algoritmo é capaz de obter os conhecidos casos de referência reportados pela literatura. O último aspecto tratado nesta tese retrata a maneira pela qual as incertezas geométricas podem influenciar na determinação das estruturas otimizadas. Utilizando o MEC, propõe-se um critério probabilístico que permite embasar escolhas levando em consideração a sensibilidade geométrica. Os resultados mostram que os critérios deterministas, nem sempre, conduzem às escolhas mais adequadas sob o ponto de vista de engenharia. Assim, este trabalho contribui para a expansão e difusão das aplicações do MEC em problemas de engenharia de estruturas.