Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Rodrigues Neto, Antonio |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/18/18134/tde-23052019-085903/
|
Resumo: |
Este trabalho propõe o estudo e o desenvolvimento de ferramentas computacionais baseadas no Método dos Elementos de Contorno (MEC) para a realização de análises mecânicas bidimensionais de estruturas e materiais não-homogêneos viscoelásticos enrijecidos. Complexos projetos de engenharia e sistemas estruturais utilizam estes tipos de materiais, o que é amplamente observado em indústrias tais como mecânica, naval, automobilística, aeronáutica e civil. No modelo proposto, o domínio bidimensional é representado pela abordagem 2D do MEC, com uso das soluções fundamentais isotrópica e anisotrópica e a teoria de modelos reológicos (modelos de Kelvin-Voigt, Maxwell e Boltzmann) é utilizada para a representação do comportamento viscoelástico destes meios. As estruturas de reforço são modeladas por elementos unidimensionais, os quais podem ser representados pelo Método dos Elementos Finitos (MEF) ou por uma abordagem 1D do MEC. A elastoplasticidade unidimensional é inserida no comportamento mecânico destes elementos, tornando o modelo não-linear, para o qual o método de Newton-Raphson é utilizado. Resultados numéricos mostram que o modelo de acoplamento MEC/MEC1D leva a resultados mais estáveis em comparação com a clássica abordagem MEC/MEF. A formulação proposta é aplicada ainda em análises mecânicas de sistemas estruturais não-homogêneos com complexa geometria e condições de contorno. Os resultados obtidos são comparados com respostas de modelos equivalentes disponíveis na literatura. A precisão, estabilidade e robustez da formulação proposta, particularmente quando domínios não-homogêneos são representados é ilustrada. |