Robustez da estabilidade assintótica e aproximações de soluções via wavelets

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Nakassima, Guilherme Kenji
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-22082019-110054/
Resumo: Neste trabalho, estudamos equações diferenciais em espaços de Banach. Duas questões são abordadas: a robustez da estabilidade assintótica, e a aproximação de soluções de sistemas periódicos por wavelets. Observa-se que a estabilidade exponencial do sistema x = A(t)x é qualitativamente preservada pelo sistema perturbado x=A(t)x+B(t)x se B(t) for integralmente pequeno. Consequentemente, tal propriedade é preservada por uma perturbação B(wt)x para w suficientemente grande, mesmo se B(t) pertence a uma classe mais geral de funções do que as funções quase-periódicas, aqui apresentada. Além disso, estudamos o efeito de aproximações de uma função periódica f (t) por wavelets periódicas na solução de um sistema periódico x = Ax+ f (t). Conclui-se que as soluções do problema inicial podem inclusive ser aproximadas utilizando a wavelet base não-periódica.