Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Nakassima, Guilherme Kenji |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-22082019-110054/
|
Resumo: |
Neste trabalho, estudamos equações diferenciais em espaços de Banach. Duas questões são abordadas: a robustez da estabilidade assintótica, e a aproximação de soluções de sistemas periódicos por wavelets. Observa-se que a estabilidade exponencial do sistema x = A(t)x é qualitativamente preservada pelo sistema perturbado x=A(t)x+B(t)x se B(t) for integralmente pequeno. Consequentemente, tal propriedade é preservada por uma perturbação B(wt)x para w suficientemente grande, mesmo se B(t) pertence a uma classe mais geral de funções do que as funções quase-periódicas, aqui apresentada. Além disso, estudamos o efeito de aproximações de uma função periódica f (t) por wavelets periódicas na solução de um sistema periódico x = Ax+ f (t). Conclui-se que as soluções do problema inicial podem inclusive ser aproximadas utilizando a wavelet base não-periódica. |