Detalhes bibliográficos
Ano de defesa: |
2005 |
Autor(a) principal: |
Guimarães, Andréa Gomes |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-26112014-144207/
|
Resumo: |
Neste trabalho estudamos algumas raízes do polinômio de Bernstein bf associado a um germe f(X) ∈ ℂ{X1,. . . , Xn} com ponto crítico isolado na origem. Sabe-se que, para cada raiz de bf, existe um número espectral tal que a soma desses dois números é um inteiro. Em geral, não se sabe exibir explicitamente esses números inteiros, embora existam cotas para eles. M. Saito [Sai93] exibe um subconjunto do conjunto das raízes de bf tal que para esses elementos a soma vale -1. Hertling e Stahlkc [IIS99] conseguiram aumentar esse subconjunto de raízes, supondo f(X) em duas variáveis, com ponto crítico isolado e monodromia finita (hipóteses essas bem restritivas). Conseguimos estender esse último resultado, sem restrições sobre o número de variáveis de, f{X) e apenas com a hipótese de ponto crítico isolado. Além disso, no caso de germes f(X1, X2) irredutíveis e com um único par de Puiseux, mostramos como descrever um subconjunto maior de raízes de bf, quando f pertence a uma dada classe de equidiferenciabilidade. |