Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Cardozo, Camila Leão |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-31012018-113548/
|
Resumo: |
O objetivo deste trabalho é construir rigorosamente variedades de soluções definidas implicitamente por equações não-lineares em dimensão infinita. Usando um método de continuação a múltiplos parâmetros aplicado a uma projeção em dimensão finita, uma triangulação da variedade é construída e usada para construir localmente a variedade no espaço de dimensão infinita. Aplicamos este método para encontrar equilíbrio da equação de Cahn-Hilliard. Estudamos também bifurcações cúspides, com o objetivo de encontrar as condições necessárias para a existência das mesmas em qualquer dimensão finita. |