Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Fernandez, Sandra Costa |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/42/42136/tde-24012020-125438/
|
Resumo: |
O envelhecimento populacional, a maior prevalência de feridas crônicas na população idosa, bem como deficiência de protocolos e produtos eficazes para o tratamento das mesmas têm impulsionado a busca por inovações visando a melhoria da qualidade de vida do paciente, eficácia de produtos, a simplificação do tratamento e diminuição de custos para a saúde pública. Neste trabalho, com o objetivo de controlar o estresse oxidativo, a contaminação microbiana e melhorar a cicatrização cutânea, foram desenvolvidos carreadores lipídicos nanoestruturados (CLNs) modificados com polímeros bioadesivos para a coencapsulação e coadministração de compostos com atividade antioxidante e antimicrobiana. Os CLNs foram obtidos pelo método de ultrassonicação, e compostos pelos lipídios manteiga de carité e óleo de argan, adicionados de tensoativo (Span® 80), antioxidantes (vitamina E, quercetina) e antimicrobiano (óleo de melaleuca); como fase aquosa foi utilizada dispersão de poloxamer 407 e Tween® 80. A adição de polímeros bioadesivos à fase aquosa originou as dispersões NCQ (com quitosana), NCA (com alginato de sódio) e NCHA (com ácido hialurônico). O diâmetro hidrodinâmico médio, PDI e potencial zeta dos CLNs sem ativos foram: 342.0 ± 15.1 nm, 0.28 ± 0.01, -23.2 ± 2.2 mV (NCA), 309.8 ± 8.6 nm, 0.27 ± 0.01 e +16.1 ± 4.3 mV (NCQ) e 312,1 ± 0.9nm, 0.25 ± 0.0 e -26,7 ± 1,3mV (NCHA); estes parâmetros se mantiveram estáveis durante 1 mês, exceto para NCHA, que foi removida do estudo. Utilizando microscopia de varredura foi observado que as nanopartículas apresentaram formato esférico e superfície aparentemente lisa. Utilizando ensaios calorimétricos, foi demonstrada a capacidade da matriz de proteger o óleo de melaleuca contra evaporação, embora a matriz de NCQ tenha se mostrado menos organizada. A adição dos ativos não promoveu alterações pronunciadas nas características físico-químicas dos CLN por 2 meses, e não foram observadas diferenças na penetração cutânea da quercetina e vitamina E entre NCA e NCQ na pele de orelha de porco in vitro com barreira comprometida (utilizada como modelo), sugerindo que o polímero utilizado e a carga conferida aos nanocarreadores não influenciaram a penetração. O efeito antimicrobiano da melaleuca a 5% foi evidenciado nos ensaios com Staphylococcus aureus e Pseudomonas aeruginosa, demonstrando que a encapsulação do óleo não inibe sua atividade antimicrobiana. Como NCA demonstrou menor potencial irritativo que NCQ em ensaio de HET-CAM, esse nanocarreador foi selecionado para ensaios de migração de fibroblastos através de Transwell®, sendo observado um aumento neste parâmetro quando do tratamento com NCA vazio e contendo os ativos. Esses resultados demonstram que NCA pode ser uma nova alternativa para melhorar o processo de cicatrização de feridas. |