Detalhes bibliográficos
Ano de defesa: |
2012 |
Autor(a) principal: |
Rodrigues, Fabrício Augusto |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/3/3141/tde-07052012-121050/
|
Resumo: |
A modelagem de distribuição de espécies tem como objetivo induzir um modelo para predizer a distribuição potencial de uma dada espécie. O modelo é projetado em um mapa de distribuição potencial que representa a probabilidade da presença da espécie em cada ponto. Esse processo de indução está relacionado com a estimativa do nicho fundamental da espécie, através da busca por relações entre dados georreferenciados de ocorrência da espécie e variáveis ambientais. Vários algoritmos de modelagem podem ser utilizados nessa tarefa. Oferecer diversos algoritmos pode tornar as ferramentas de modelagem mais completas. Porém, surge uma questão importante: qual algoritmo de modelagem escolher? Essa questão está relacionada com o desempenho preditivo das técnicas implementadas pelos algoritmos. Nesse contexto, o objetivo principal do trabalho foi organizar e especificar um método de análise de desempenho preditivo dos algoritmos de modelagem de distribuição de espécies. Através do método proposto é possível ter uma visão completa, estruturada e sistemática das etapas previstas em projetos de análise de desempenho preditivo dos algoritmos. O método pode ser utilizado como referência em estudos de validação de novos algoritmos, de comparação entre técnicas e na seleção de um ou mais algoritmos de modelagem. Como estudo de caso, o método proposto foi adotado nos testes de validação de um algoritmo baseado em Redes Neurais, desenvolvido e integrado ao framework openModeller, através da comparação com outros algoritmos já utilizados na modelagem. Além da própria validação, os testes tiveram como objetivo demonstrar a aplicabilidade do método. Os resultados mostraram que o algoritmo de Redes Neurais apresentou desempenho semelhante ao desempenho dos demais algoritmos, tendo sido, portanto, validado como adequado à tarefa de modelagem. Ainda no contexto da pesquisa, um algoritmo baseado na técnica de amostragem denominada Jackknife foi integrado ao openModeller, para aplicação na etapa de pré-análise. Testes relacionados com o tempo de execução foram realizados e uma versão paralela desse algoritmo foi desenvolvida. |