Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
Bruschi, Adriano Ghigiarelli |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/18/18161/tde-19042023-171301/
|
Resumo: |
Durante a certificação e ensaios em voo de um novo modelo de aeronave, o processo de comprovação da baixa susceptibilidade à oscilação caracterizada como PIO é comumente feita com base na experiencia dos pilotos de prova envolvidos no projeto, desta forma, o resultado de comprovação da segurança da operação com relação ao PIO está intrínseca a subjetividade da análise, ou seja, o processo de certificação pelo qual novos projetos de aeronaves são submetidos está diretamente relacionado à experiencia da tripulação na qual realiza os ensaios de PIO daquele modelo. Novas aeronaves tendem a reduções de margens de estabilidade inerentes ao projeto, ou seja, maiores tendências ao PIO, e veículos autônomos com capacidade de voo completo sem tripulação, o que colabora para necessidade da redução da subjetividade na classificação do PIO para projetos futuros. Este trabalho trata do desenvolvimento de uma rede neural artificial capaz de classificar a oscilação de PIO de acordo com a escala de PIOR, e faz a análise da subjetividade na classificação do PIO. A assertividade do resultado obtido com a classificação via rede neural artificial foi superior ao obtido pela classificação dada pelos pilotos, quando a escolha das entradas segue as diretrizes estabelecidas nesta dissertação. |