Detalhes bibliográficos
Ano de defesa: |
2014 |
Autor(a) principal: |
Silva, Rodrigo Alves |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/96/96132/tde-04112014-165830/
|
Resumo: |
Os modelos de análise e decisão de concessão de crédito buscam associar o perfil do tomador de crédito à probabilidade do não pagamento de obrigações contraídas, identificando assim o risco associado ao tomador e auxiliando a firma a decidir pela aprovação ou negação da solicitação de crédito. Atualmente este campo de pesquisa tem ganhado importância no cenário nacional - pela intensificação da atividade de crédito no país com grande participação dos bancos públicos neste processo - e internacional - pelo aumento das preocupações com potenciais danos à economia derivados de eventos de default. Tal quadro fez com que fossem construídos e adaptados diversos modelos e métodos à análise de risco de crédito tanto para consumidores como para empresas. Estes modelos são testados e comparados com base na acurácia de previsão ou de métricas de otimização estatística. Este é um procedimento que pode não se mostrar eficiente do ponto de vista financeiro, ao mesmo tempo em que dificulta a interpretação e tomada de decisão por parte da firma quanto a qual o melhor modelo, gerando uma lacuna pelo desprendimento observado entre a decisão de qual o modelo a ser adotado e o objetivo financeiro da empresa. Tendo em vista que o desempenho financeiro é um dos principais indicadores de qualquer procedimento gerencial, o presente estudo objetivou preencher a esta lacuna analisando o desempenho financeiro de carteiras de crédito formadas por técnicas de aprendizagem estatística utilizadas atualmente na classificação e análise de risco de crédito em pesquisas nacionais e internacionais. A pesquisa selecionou as técnicas: análise discriminante, regressão logística, redes bayesianas Naïve Bayes, kdB-1, kdB-2, SVC e SVM e aplicou tais técnicas junto à base de dados German Credit Data Set. Os resultados foram analisados e comparados inicialmente em termos de acurácia e custos por erro de classificação. Adicionalmente a pesquisa propôs o emprego de quatro métricas financeiras (RFC, PLR, RAROC e IS), encontrando variações quanto aos resultados produzidos por cada técnica. Estes resultados sugerem variações quanto a sequência de eficiência e consequentemente de emprego das técnicas, demonstrando a importância da consideração destas métricas para a análise e decisão de seleção de modelos de classificação ótimos. |