Indução de árvore de decisão utilizando meta-aprendizado

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Ferreira, Caíque Augusto
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/59/59143/tde-05122022-145141/
Resumo: Os modelos de aprendizado simbólico destacam-se dentro da área do Aprendizado de Máquina devido às suas representações serem interpretáveis pelo homem. Uma característica deste modelo é ser excessivamente responsivo ao conjunto de exemplos utilizados, o que pode resultar em uma piora significativa no desempenho caso haja pequenas variações no conjunto de treinamento. A estratégia de combinação de modelos (ensembles) apresenta-se como uma alternativa para melhorar a precisão e a estabilidade dos modelos. A estratégia consiste em gerar diferentes modelos por meio do mesmo conjunto de treinamento e combiná-los em um único modelo final, geralmente, por meio de um processo de votação. Uma característica indesejável da estratégia ensemble é a complexidade do modelo final, já que este é formado por um conjunto de modelos. Nesta pesquisa é proposta uma abordagem para induzir uma meta-árvore de decisão com base na combinação das árvores de decisão de uma floresta (Random Forest). Experimentos foram realizados em 150 datasets de diferentes domínios. A abordagem proposta aplicada em 43 datasets categóricos dos 150 analisados, obteve um desempenho tão bom quanto uma floresta com 128 árvores sem diferenças estatisticamente significativas. Trata-se de um resultado interessante, levando em consideração a interpretabilidade fornecida por uma única árvore de decisão como modelo resultante.