Alternativas de análise para experimentos G × E multiatributo

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Peña, Marisol Garcia
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/11/11134/tde-04052016-111857/
Resumo: Geralmente, nos experimentos genótipo por ambiente (G × E) é comum observar o comportamento dos genótipos em relação a distintos atributos nos ambientes considerados. A análise deste tipo de experimentos tem sido abordada amplamente para o caso de um único atributo. Nesta tese são apresentadas algumas alternativas de análise considerando genótipos, ambientes e atributos simultaneamente. A primeira, é baseada no método de mistura de máxima verossimilhança de agrupamento - Mixclus e a análise de componentes principais de 3 modos - 3MPCA, que permitem a análise de tabelas de tripla entrada, estes dois métodos têm sido muito usados na área da psicologia e da química, mas pouco na agricultura. A segunda, é uma metodologia que combina, o modelo de efeitos aditivos com interação multiplicativa - AMMI, modelo eficiente para a análise de experimentos (G × E) com um atributo e a análise de procrustes generalizada, que permite comparar configurações de pontos e proporcionar uma medida numérica de quanto elas diferem. Finalmente, é apresentada uma alternativa para realizar imputação de dados nos experimentos (G × E), pois, uma situação muito frequente nestes experimentos, é a presença de dados faltantes. Conclui-se que as metodologias propostas constituem ferramentas úteis para a análise de experimentos (G × E) multiatributo.