Previsão da curva de juros com análise de componentes principais utilizando matriz de covariâcia de longo prazo

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Hissanaga, Hugo Mamoru Aoki
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/96/96131/tde-27102017-102841/
Resumo: Apesar da Análise de Componentes Principais (PCA) ser um dos métodos mais importantes na análise da estrutura a termo de taxa de juros, há fortes indícios de não ser adequada para estimar fatores da curva de juros quando há presença de dependência temporal e erros de medida. Para corrigir esses problemas é indicado utilizar a matriz de covariância de longo prazo, extraindo a correta estrutura de covariância presente nestes processos. Neste trabalho, mostramos que realizar a previsão fora da amostra da curva de taxa de juros com o método de Análise de Componentes Principais (PCA) utilizando como base a matriz de covarância de longo prazo (LRCM) parece ser mais acurada comparada a PCA com base na matriz de covariância amostral.