Modelagem de processo de extração de conhecimento em banco de dados para sistemas de suporte à decisão.

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Shiba, Sonia Kaoru
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3142/tde-02102008-173336/
Resumo: Este trabalho apresenta a modelagem de um processo de extração de conhecimento, onde a aquisição de informações para a análise de dados têm como origem os bancos de dados transacionais e data warehouse. A mineração de dados focou-se na geração de modelos descritivos a partir de técnicas de classificação baseada no Teorema de Bayes e no método direto de extração de regras de classificação, definindo uma metodologia para a geração de modelos de aprendizagem. Foi implementado um processo de extração de conhecimento para a geração de modelos de aprendizagem para suporte à decisão, aplicando técnicas de mineração de dados para modelos descritivos e geração de regras de classificação. Explorou-se a possibilidade de transformar os modelos de aprendizagem em bases de conhecimento utilizando um banco de dados relacional, disponível para acesso via sistema especialista, para a realização de novas classificações de registros, ou então possibilitar a visualização dos resultados a partir de planilhas eletrônicas. No cenário descrito neste trabalho, a organização dos procedimentos da etapa de pré-processamento permitiu que a extração de atributos adicionais ou transformação de dados fosse realizada de forma iterativa, sem a necessidade de implementação de novos programas de extração de dados. Desta forma, foram definidas todas as atividades essenciais do pré-processamento e a seqüência em que estas devem ser realizadas, além de possibilitar a repetição dos procedimentos sem perdas das unidades codificadas para o processo de extração de dados. Um modelo de processo de extração de conhecimento iterativo e quantificável, em termos das etapas e procedimentos, foi configurado vislumbrando um produto final com o projeto da base de conhecimento para ações de retenção de clientes e regras para ações específicas com segmentos de clientes.