Detalhes bibliográficos
Ano de defesa: |
2005 |
Autor(a) principal: |
Senger, Luciano José |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-10012018-103454/
|
Resumo: |
Esta tese apresenta uma abordagem dinâmica e incremental para a exploração de características de execução e de submissão de aplicações paralelas visando o escalonamento de processos. Modelos de classificação e de predição de características de aplicações são construídos, utilizando algoritmos de aprendizado de máquina adaptados como ferramentas para a aquisição de conhecimento sobre a carga de trabalho. Os paradigmas conexionista e baseado em instâncias orientam a aquisição de conhecimento e os algoritmos e suas extensões permitem a atualização do conhecimento obtido, a medida que informações mais recentes tomamse disponíveis. Esses algoritmos são implementados e avaliados utilizando informações obtidas através da monitoração da execução de aplicações paralelas e da utilização de traços de execução representativos da carga de trabalho sequencial e paralela de diferentes centros de computação. A avaliação é conduzida visando observar o desempenho nas tarefas de aquisição de conhecimento e classificação, assim como o desempenho computacional das implementações dos algoritmos. Algoritmos de escalonamento são definidos e avaliados para observar as vantagens da utilização do conhecimento adquirido, considerando cenários de execução baseados em máquinas paralelas e sistemas distribuídos. Os resultados obtidos com este trabalho justificam a importância da utilização desse conhecimento nas decisões do software de escalonamento em sistemas computacionais distribuídos e contribuem para a definição de mecanismos adequados para a aquisição e utilização desse conhecimento em sistemas paralelos reais. |