Detalhes bibliográficos
Ano de defesa: |
1997 |
Autor(a) principal: |
Oliveira, Cláudia de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://teses.usp.br/teses/disponiveis/45/45132/tde-20210729-013802/
|
Resumo: |
Neste trabalho estudamos funções S-unimodais f : [-1,1]'SETA'[-1,1] sob vários aspectos da teoria de Sistemas Dinâmicos. Primeiramente, apresentamos a derivada Schwarziana e algumas das suas propriedades. Posteriormente a utilizamos como ferramenta no estudo da dinâmica das funções S-unimodais. Um dos fatos mais relevantes é o Princípio de Köbe, o qual nos dá um controle para a distorção da razão cruzada de intervalos J 'ESTÁ CONTIDO EM' T 'ESTÁ CONTIDO EM' [-1,1] por iteradas de f, e garante também um certo controle para a não-linearidade destas iteradas. No que se refere a estrutura topológica da dinâmica gerada por uma função S-unimodal, mostramos que existe no máximo um atrator periódico e não existem intervalos errantes. Em seguida desenvolvemos a Teoria de Milnor e Thurston a qual emprega dinâmica simbólica para fazer uma classificação topológica destes sistemas. Provamos que a órbita do ponto crítico de uma função S-unimodal determina a sua dinâmica. Finalizamos fazendo um estudo dos aspectos métricos relacionados com a dinâmica de funções S-unimodais. Nos interessamos principalmente pela hiperbolicidade e pela medida de Lebesgue de conjuntos invariantes |