Abordagens para a segmentação de coronárias em ecocardiografia.

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: Souza, André Fernando Lourenço de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3142/tde-20102010-123221/
Resumo: A Ecocardiografia continua sendo a técnica de captura de imagens mais promissora, não-invasiva, sem radiação ionizante e de baixo custo para avaliação de condições cardíacas. Porém, é afetada consideravelmente por ruídos do tipo speckle, que são difíceis de serem filtrados. Por isso fez-se necessário fazer a escolha certa entre filtragem e segmentador para a obtenção de resultados melhores na segmentação de estruturas. O objetivo dessa pesquisa foi estudar essa combinação entre filtro e segmentador. Para isso, foi desenvolvido um sistema segmentador, a fim de sistematizar essa avaliação. Foram implementados dois filtros para atenuar o efeito do ruído speckle - Linear Scaling Mean Variance (LSMV) e o filtro de Chitwong - testados em imagens simuladas. Foram simuladas 60 imagens com 300 por 300 pixels, 3 modelos, 4 espessuras e 5 níveis de contrastes diferentes, todas com ruído speckle. Além disso, foram feitos testes com a combinação de filtros. Logo após, foi implementado um algoritmo de conectividade Fuzzy para fazer a segmentação e um sistema avaliador, seguindo os critérios descritos por Loizou, que faz a contagem de verdadeiro-positivos (VP) e falso-positivos (FP). Foi verificado que o filtro LSMV é a melhor opção para segmentação por conectividade Fuzzy. Foram obtidas taxas de VP e FP na ordem de 95% e 5%, respectivamente, e acurácia em torno de 95%. Para imagens ruidosas com alto contraste, aplicando a segmentação sem filtragem, a acurácia obtida foi na ordem de 60%.