Modelos para proporções com superdispersão provenientes de ensaios toxicológicos no tempo

Detalhes bibliográficos
Ano de defesa: 2001
Autor(a) principal: Freitas, Silvia Maria de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://teses.usp.br/teses/disponiveis/11/11134/tde-20200111-151502/
Resumo: O controle biológico de pragas utiliza agentes entomopatogênicos ou patógenos ( vírus, fungos, bactérias, parasitas e nematóides) para controlar ou eliminar uma população de peste. Este método é uma alternativa para métodos tradicionais e está se tornando de interesse crescente em função da proibição do uso de muitos pesticidas químicos, e também porque é ecológica e economicamente atraente. Nos experimentos em toxicologia com esses agentes, é comum o aparecimento de resposta do tipo mortalidade acumulada em um grupo de insetos, medida em vários pontos no tempo (dias, semanas etc). Consequentemente, os dados são em parte longitudinais, desde que a mortalidade acumulada (para cada grupo) é modelada como uma função do tempo e das covariáveis em cada nível do grupo. O problema de ajustar mortalidade acumulada como uma função do tempo para dados agrupados envolve a modelagem de uma resposta multinomial ao longo do tempo. Um aspecto adicional aqui é a possibilidade de uma variação extra-multinomial (superdispersão) que pode surgir em função do uso dos grupos como unidades experimentais. Como consequência por não se considerar a superdispersão tem-se a subestimação dos erros padrões das estimativas dos coeficientes da regressão, levando a conclusões incorretas dos efeitos de tratamentos e intervalos de confiança muito estreitos (Hinde e Demétrio, 1998a, b). Para esse tipo particular de dados, existem poucos métodos e modelos apropriados que podem ser aplicados. Podem ser citados as técnicas de análise de sobrevivência (Petkau & Sitter, 1989) e modelos lineares generalizados ordinais (McCullagh, 1980; Glonek & McCullagh, 1995). Porém, estes procedimentos são questionáveis na presença de variabilidade extra-multinomial nos dados. O uso das equações de estimação generalizadas (EEG) de Liang & Zeger (1986) veio como uma versão multivariada da quase verossimilhança (McCullagh & Nelder, 1989) para o ajuste de modelos lineares generalizados para dados agrupados. Não é necessária a identificação completa do modelo probabilístico, mas apenas a especificação dos dois primeiros momentos do vetor de resposta para cada agrupamento, definindo a relação funcional entre a média e a variância. Não existe necessidade de especificar completamente a verossimilhança, o que muitas vezes é intratável para dados que não tenham distribuição Gaussiana, até mesmo quando são feitas suposições adicionais. Para dados com distribuição Gaussiana os primeiro e segundo momentos identificam completamente a verossimilhança, em caso contrário fazem-se necessárias suposições adicionais sobre momentos de ordem superior a dois. Neste trabalho foi utilizada a metodologia de modelos lineares generalizados para dados multinomiais na modelagem de dados agrupados com superdispersão, seguindo a metodologia proposta por O'Hara Hines & Lawless (1993). Usou-se uma função de ligação logística, considerando o dia como uma variável explicativa, em todos os modelos considerados. O primeiro modelo utilizado foi o modelo multinominal padrão acumulado. O segundo modelo, uma extensão do modelo beta-binomial, utiliza uma distribuição multinominal para a variável resposta e uma distribuição Dirichlet para o vetor de probabilidades, levando a uma distribuição composta Dirichlet-multinomial. O terceiro modelo incorpora um efeito aleatório ao preditor linear produzindo um efeito diferenciado no intercepto da regressão em cada amostra multinominal. O modelo final inclui efeitos aleatórios no intercepto e no coeficiente angular da regressão.