Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
Oliveira, Tiago Branquinho |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/60/60138/tde-28102015-155052/
|
Resumo: |
Com o surgimento da era computacional com especial aplicação em química, as substâncias de origem naturais puderam ter suas informações armazenadas em bancos de dados. Desta forma, surge a oportunidade de se empregar bancos de dados de produtos naturais e de algumas ferramentas de quimioinformática como os estudos de Quantitative Structure-Retention Relationship (QSRR) para acelerar a identificação de substâncias em estudos metabolômicos. Este trabalho propôs o desenvolvimento de três estudos de QSRR, bem como a construção de um banco de dados (AsterDB) com estruturas químicas da família Asteraceae e informações a elas associadas (ex.: ocorrências botânicas e taxonômicas, atividade biológica, informações analíticas etc.) para auxiliar a desreplicação de substâncias em extratos vegetais. O primeiro estudo foi elaborado com 39 lactonas sesquiterpênicas (LST) analisadas em dois diferentes sistemas de solventes (MeOH-H2O 55:45 e MeCN-H2O 35:65), três grupos de descritores estruturais (2D-descr, 3D-1conf e 3D-weigh), dois diferentes conjuntos para treino e teste (26:13 e 29:10), quatro algoritmos para seleção de descritores (best first, linear forward - LFS, greedy stepwise e algoritmo genético - GA), três diferentes tamanhos de modelos (quatro, cinco e seis descritores) e dois métodos de modelagem (mínimos quadrados parciais - PLS e redes neurais artificiais - ANN). O segundo foi desenvolvido com 50 substâncias de diferentes classes químicas com intuito de avaliar as diferenças entre substâncias analisadas individualmente e em mistura em três diferentes equipamentos e dois métodos cromatográficos. O terceiro foi elaborado com 2.635 estruturas químicas com um teste externo comum a todos os modelos (25%, n = 656), três métodos de separação para teste e treino (partição baseada na resposta e baseada nos preditores 2D e 3D), três diferentes tamanhos de modelos selecionados por GA e dois métodos de modelagem (MLR e redes neurais feed-forward com regularização bayesiana - BRNN). O banco de dados AsterDB foi desenvolvido para ser preenchido de forma gradual e atualmente possui cerca de 2.000 estruturas químicas. O primeiro estudo de QSRR gerou bons modelos capazes de estimar o logaritmo do fator de retenção (logk) das LST com P2>0,81 para o sistema MeCN-H2O. O segundo estudo mostrou que não houve diferença estatística entre as substâncias analisadas individualmente e em mistura (p-valor>0,95) e que a correlação entre os dois métodos cromatográficos e equipamentos utilizados foi reprodutível (R>0,95). Estas análises mostraram que foi possível desenvolver modelos de QSRR para um método cromatográfico e equipamento e transpô-los para outro equipamento seguindo o uso de substâncias em comum. O terceiro estudo produziu modelos com boa capacidade de predição (P2>0,81) utilizando alta amplitude de espaço químico e rigor estatístico. Conclui-se que, estas informações podem ser utilizadas como uma plataforma piloto para análises de dados com objetivo de auxiliar na desreplicação de extratos de plantas em estudos metabolômicos |