Transformação de redes de Petri coloridas em processos de decisão markovianos com probabilidades imprecisas.

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: Eboli, Mônica Goes
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3152/tde-20082010-163351/
Resumo: Este trabalho foi motivado pela necessidade de considerar comportamento estocástico durante o planejamento da produção de sistemas de manufatura, ou seja, o que produzir e em que ordem. Estes sistemas possuem um comportamento estocástico geralmente não considerado no planejamento da produção. O principal objetivo deste trabalho foi obter um método que modelasse sistemas de manufatura e representasse seu comportamento estocástico durante o planejamento de produção destes sistemas. Como os métodos que eram ideais para planejamento não forneciam a modelagem adequada dos sistemas, e os com modelagem adequada não forneciam a capacidade de planejamento necessária, decidiu-se combinar dois métodos para atingir o objetivo desejado. Decidiu-se modelar os sistemas em rede de Petri e convertê-los em processos de decisão markovianos, e então realizar o planejamento com o ultimo. Para que fosse possível modelar as probabilidades envolvidas nos processos, foi proposto um tipo especial de rede de Petri, nomeada rede de Petri fatorada. Utilizando este tipo de rede de Petri, foi desenvolvido o método de conversão em processos de decisão markovianos. A conversão ocorreu com sucesso, conforme testes que mostraram que planos podem ser produzidos utilizando-se algoritmos de ponta para processos de decisão markovianos.