Modelos de Mistura para Dados de Sobrevivência na Presença de Covariáveis, Utilizando Métodos Bayesianos

Detalhes bibliográficos
Ano de defesa: 1998
Autor(a) principal: Pereira, Gilberto de Araujo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-15032018-084127/
Resumo: Nesta dissertação, desenvolvemos uma análise Bayesiana de modelos de mistura finita de distribuições, para dados de sobrevivência sem censura, com censura tipo II e dados censurados por intervalos, na presença de uma covariável. Consideramos os algoritmos amostrador de Gibbs com Metropolis-Hastings, e utilizamos os estimadores de Monte Carlo para conseguir as quantitades à posteriori de interesse, assumindo diferentes escolhas para as (J = 2) densidades no modelo de mistura, como por exemplo a mistura de, duas distribuições potência exponencial a qual considera uma grande classe de distribuições simétricas, duas distribuições normais, normal-exponencial e gamma-normal. Apresentamos também ah gumas considerações na seleção do modelo utilizando as densidades preditivas (CP0)preditivas condicionais ordenadas e introduzimos três exemplos numéricos para ilustrar a metodologia proposta.