Detalhes bibliográficos
Ano de defesa: |
1998 |
Autor(a) principal: |
Pereira, Gilberto de Araujo |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-15032018-084127/
|
Resumo: |
Nesta dissertação, desenvolvemos uma análise Bayesiana de modelos de mistura finita de distribuições, para dados de sobrevivência sem censura, com censura tipo II e dados censurados por intervalos, na presença de uma covariável. Consideramos os algoritmos amostrador de Gibbs com Metropolis-Hastings, e utilizamos os estimadores de Monte Carlo para conseguir as quantitades à posteriori de interesse, assumindo diferentes escolhas para as (J = 2) densidades no modelo de mistura, como por exemplo a mistura de, duas distribuições potência exponencial a qual considera uma grande classe de distribuições simétricas, duas distribuições normais, normal-exponencial e gamma-normal. Apresentamos também ah gumas considerações na seleção do modelo utilizando as densidades preditivas (CP0)preditivas condicionais ordenadas e introduzimos três exemplos numéricos para ilustrar a metodologia proposta. |