Física da psicofísica: uma abordagem mecanística à lei de Stevens

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Galera, Emílio Frari
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/59/59135/tde-17092021-085653/
Resumo: Interagimos colo o ambiente através de nossos sentidos. A amplitude dos estímulos que carregam informações podem variar em ordens de magnitude e ainda assim, somos capazes de percebe-los e processa-los de forma automática, diferentemente de equipamentos eletrônicos, digitais ou analógicos, que necessitam de ajustes de escala para detectar estímulos em diversas ordens de grandeza. Por exemplo, conseguimos escutar desde o som de um alfinete caindo no chão quanto o motor de um avião a jato enquanto decola, sem precisarmos ajustar a sensibilidade de nossos ouvidos. De acordo com a Psicofísica, o que torna possível nossa flexibilidade ao lidar com alguns tipos de estímulos é uma relação não linear entre o estímulo e nossa resposta, conhecida como lei de potência de Stevens. Estudamos, neste projeto, uma rede bidimensional em camadas de neurônios simplificados do tipo integra-dispara estocásticos. Para isso, partimos de uma análise de campo médio. Validamos os resultados analíticos através de simulações do modelo em uma rede tipo grafo completo e em uma rede com topologia dinâmica (annealed). Em seguida, caracterizamos o comportamento do modelo em uma rede bidimensional medindo o ponto de transição de fase e três expoentes críticos. Mostramos que este sistema produz a Lei de Stevens da Psicofísica como um fenômeno emergente onde a resposta do sistema a estímulos externos é máxima e obedece uma lei de potência no ponto crítico de uma transição de fase. Assim, no espírito da Física Estatística, temos um modelo microscópico que explica uma lei macroscópica. Mostramos também a importância da topologia da rede e como a sua resposta melhora quando estendemos o modelo para duas camadas de elementos.