Detecção e análise de sinais EEG com aplicação em robótica educacional

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Pinto, Adam Henrique Moreira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-18032020-095758/
Resumo: Com a tecnologia, existem muitas formas de se aprimorar o aprendizado, mesmo fora da sala de aula. Sistemas educacionais têm sido bastante empregados para essa finalidade, inclusive com o uso de robôs, mas ainda pecam em alguns aspectos de interação com os humanos. As interfaces cérebro-computador (BCI) são sistemas que permitem a comunicação entre usuário e computador a partir de informações do cérebro, podendo dar mais robustez aos sistemas robóticos educacionais. As dificuldades dos alunos são claras durantes provas e outras atividades de avaliação, o problema são os erros durante os estudos para essas provas. Para ajudar neste ponto do aprendizado, foi utilizado um sinal evocado no cérebro relacionado à percepção do erro por um usuário, chamado de Error Related Potential (ErrP), que pode ser medido no EEG, uma forma não-invasiva de BCI. Porém, esses sistemas ainda pecam na qualidade do sinal obtido e na acurácia em encontrar esses momentos de erro. Neste trabalho, foi proposto um sistema de detecção do ErrP, passando pela filtragem, extração de características e classificação do sinal. O pré-processamento do sinal passou por filtros FIR e ICA para limpeza de ruídos e artefatos, foram criados vetores de características com as transformadas de Fourier e as famílias Haar e Daucechies de transformadas wavelets. Para classificação, foram comparadas redes neurais (MLP) e de aprendizado profundo (CNN). Os resultados demonstraram uma acurácia de 96% quando o sinal foi aplicado na base criada, e de 77,23% quando aplicada a toda a rede, mostrando ser promissora para utilização em sistemas educacionais. Além disso, mostrou que a diferença entre as famílias wavelets apresentadas neste trabalho foram pequenas, e que sua escolha pode ser feita considerando o tempo para processamento do sinal. Este trabalho serve como um módulo para um sistema educacional maior, que visa preencher algumas lacunas encontradas nos trabalhos disponíveis.