Modelos semiparamétricos para eventos recorrentes

Detalhes bibliográficos
Ano de defesa: 1999
Autor(a) principal: Paes, Ângela Tavares
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://teses.usp.br/teses/disponiveis/45/45133/tde-20210729-024236/
Resumo: A maioria dos estudos que envolvem Análise de Sobrevivência considera o tempo até a ocorrência de um único evento. Neste trabalho, analisamos situações onde o evento de interesse pode ocorrer mais de uma vez para o mesmo indivíduo. Embora osestudos nessa área tenham recebido considerável atenção nos últimos anos, as técnicas que já existem e que podem ser aplicadas a esses casos especiais ainda são pouco difundidas. O objetivo desta dissertação é descrever alguns métodosestatísticos para análise de eventos recorrentes e discutir suas aplicações. Utilizando a abordagem de processos de contagem multivariados, representamos o problema como um processo de Markov, em que os indivíduos são associados a diferentesestados ao longo do tempo. Esta metodologia consiste em estimar matrizes cujos elementos correspondem às probabilidades de transição entre os estados. Descrevemos métodos de estimação não paramétricos e três modelos semiparamétricos propostos naliteratura, baseados no modelo de riscos proporcionais de Cox. Os métodos são ilustrados através de um exemplo baseado em dados reais