Modelo semiparamétrico de fragilidade Gama

Detalhes bibliográficos
Ano de defesa: 1999
Autor(a) principal: Chicarino, Maria Paula Zanardi
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://teses.usp.br/teses/disponiveis/45/45133/tde-20210729-024108/
Resumo: As técnicas inicialmente desenvolvidas em Análise de Sobrevivência supõem independência entre os tempos de ocorrência do evento de interesse. Em problemas multivariados, contudo, é razoável assumirmos que exista dependência entre as observações.Uma das formas para incorporar essa dependência é introduzir um efeito aleatório na modelagem da função de risco. Esses modelos são chamados de modelos de fragilidade e têm sido amplamente estudados desde o início da década de 80. Nesse trabalhoconsideramos modelos de fragilidade supondo distribuição Gama para o efeito aleatório, no contexto do modelo de riscos proporcionais de Cox. Apresentamos quatro diferentes métodos de estimação descritos na literatura e os comparamos através detrês conjuntos de dados diferentes. Além disso, avaliamos o uso das três estatísticas mais populares para testes de hipótese: Wald, Escore e Razão de Verossimilhanças no caso específico do modelo semiparamétrico com fragilidade Gama