Controle fuzzy via alocação de pólos com funções de Lyapunov por partes

Detalhes bibliográficos
Ano de defesa: 2006
Autor(a) principal: Tognetti, Eduardo Stockler
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/18/18133/tde-11122006-210846/
Resumo: O presente trabalho apresenta um método de projeto de controlador com alocação de pólos em sistemas fuzzy utilizando funções de Lyapunov por partes e contínuas no espaço de estado. A idéia principal é utilizar controladores chaveados no espaço de estado para obter uma resposta transitória satisfatória do sistema, obtida pela localização dos pólos. A modelagem fuzzy Takagi-Sugeno é utilizada para representar um sistema não-linear em diversos pontos de linearização através de uma aproximação por vários modelos locais lineares invariantes no tempo. A análise de estabilidade e o projeto de sistemas de controle podem se formulados em termos de desigualdades matriciais lineares (em inglês, linear matrix inequalities (LMIs)), as quais são resolvidas por técnicas de programação convexa. Na análise de estabilidade ou na síntese de um controlador em sistemas fuzzy é necessário resolver um número determinado de LMIs de acordo com o número de modelos locais. Encontrar uma função de Lyapunov comum a todos os modelos locais pode ser inviável, especialmente quando se impõem critérios de desempenho, que aparecem como restrições no contexto de LMIs. A proposta de uma função de Lyapunov por partes objetiva diminuir o conservadorismo na busca de um controlador que leve os pólos de malha fechada à uma região desejada. Resultados de análise e síntese da teoria de sistemas lineares por partes contribuíram para a construção do resultado apresentado. Exemplos com simulação ilustram o método proposto.