O método de ponderação bayesiana de modelos para seleção de modelos

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Zhangzhe, Zheng
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/45/45133/tde-18042023-090238/
Resumo: Nas pesquisas em geral, as pessoas comumente propõem um único modelo na seleção de variáveis explicativas e assumem que é o modelo final, mas isso ignora tanto a incerteza do modelo quanto em esti- mativas de coeficientes. Todos os modelos estatísticos tradicionais têm esse tipo de problema de \"incerteza\". O Bayesian Model Averaging (BMA) é um método que tem uma longa história de desenvolvimento teórico e aplicação que visa explicar diretamente a incerteza de seleção do modelo. O BMA não seleciona diretamente um único modelo final dentre os disponíveis, mas calcula uma média ponderada dos modelos possíveis ba- seada nas probabilidades a posteriori de tais modelos. O objetivo deste estudo é revisar o BMA e algumas de suas propriedades e aplicá-lo em alguns exemplos reais. Os resultados mostram que o BMA tem um efeito melhor do que o modelo tradicional de seleção de variáveis e melhores resultados de previsão.