Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
Flores, Arthur Marçal |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/100/100131/tde-16122020-192412/
|
Resumo: |
Com a rápida expansão dos sistemas de tecnologia da informação (TI) em anos recentes, surge a oportunidade de aprimorar os serviços em diversos segmentos, entre eles, os prestados pelas instituições governamentais. Dentre estes diversos serviços, a disponibilização de informações públicas é um exemplo importante, pois por meio da Lei da Transparência juntamente com a Lei de Acesso à Informação, criaram um ambiente mais democrático no Brasil. Um operacionalizador do processo de transparência, é o Sistema Eletrônico do Serviço de Informação ao Cidadão (e-SIC), sendo que os dados provenientes desta plataforma constituem um córpus de especial interesse para o presente trabalho. A disponibilidade de textos rotulados com escores de satisfação deste sistema sugere a oportunidade de utilizar métodos de processamento de línguas naturais (PLN) para inferir de forma automática a satisfação de usuários, especialmente no que diz respeito ao uso de redes neurais que têm obtido resultados positivos em diversas tarefas da área. A partir desta observação, o presente trabalho apresenta os resultados de pesquisa em nível de mestrado no campo de PLN, no domínio da satisfação de usuários, com o objetivo geral de desenvolver modelos computacionais para avaliar a satisfação dos usuários de plataformas de solicitação de acesso à informação, por meio da utilização de técnicas baseadas em aprendizado neural. |