Modelos de sobrevivência bivariados baseados na cópula PVF
Ano de defesa: | 2020 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de São Carlos
Câmpus São Carlos |
Programa de Pós-Graduação: |
Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Palavras-chave em Inglês: | |
Área do conhecimento CNPq: | |
Link de acesso: | https://repositorio.ufscar.br/handle/20.500.14289/12431 |
Resumo: | An alternative developed to study associations among multivariate survival times is the use of models based on copula functions. In this work, we use the survival model derived from the PVF copula, based on the Power Variance Function distribution, to model the dependence of bivariate data in the presence of covariates and censored observations. For inferential purposes, we perform a Bayesian approach using Monte Carlo Markov Chain (MCMC) methods. Some discussions about model selection criteria are presented. In order to detect influential observations, we used the Bayesian method of deletion influence analysis of cases based on divergence psi. Finally, we show the applicability of the proposed models to simulated and real datasets. |