Modelos de sobrevivência bivariados baseados na cópula PVF

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Biondo, Thiago Ramos
Orientador(a): Suzuki, Adriano Kamimura lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/12431
Resumo: An alternative developed to study associations among multivariate survival times is the use of models based on copula functions. In this work, we use the survival model derived from the PVF copula, based on the Power Variance Function distribution, to model the dependence of bivariate data in the presence of covariates and censored observations. For inferential purposes, we perform a Bayesian approach using Monte Carlo Markov Chain (MCMC) methods. Some discussions about model selection criteria are presented. In order to detect influential observations, we used the Bayesian method of deletion influence analysis of cases based on divergence psi. Finally, we show the applicability of the proposed models to simulated and real datasets.