Identificação de sistemas não-lineares de modelos com estrutura de Wiener e Hammerstein para NMPC.

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Quachio, Raphael
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3139/tde-07022019-104111/
Resumo: Esta tese tem por objetivo a obtenção de modelos que apresentem melhor desempenho quando utilizados em controladores preditivos baseados em modelo (Model-based Predictive Control, MPC). Ao longo dos últimos 25 anos diversos trabalhos propuseram métodos baseados na minimização de uma função de predição múltiplos passos à frente, que se caracteriza por ser uma função não linear. Estes métodos foram denominados MPC Relevent Identification (MRI). A maioria destes artigos propõe técnicas para a obtenção de modelos lineares. Ao longo dos últimos 5 anos, alguns métodos, também baseados na minimização da função de predição múltiplos passos à frente, foram propostos para a identificação de modelos não lineares. Estes trabalhos são baseados na minimização direta da função de custo não linear, para obter com estrutura NARMAX (Nonlinear Autoregressive Moving Average with exogenous inputs). Entretanto, estruturas simplificadas de controladores MPC não lineares podem ser obtidas utilizando modelos com estruturas de Wiener e de Hammerstein. Esta tese apresenta novos resultados teóricos que permitem a obtenção de algoritmos de identificação MRI para modelos com estrutura de Wiener e Hammerstein, sem a necessidade de minimizar a função de custo não linear. Além da demonstração dos resultados teóricos, novos algoritmos são propostos tendo a sua capacidade de predição, propriedades estatísticas e aplicação em controladores MPC não lineares avaliadas.