Códigos metacíclicos

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Assuena, Samir
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-30102013-065155/
Resumo: Neste trabalho, consideramos álgebras de grupo semissimples F_G de grupos metacíclicos não abelianos que cindem sobre corpos finitos. Inicialmente, damos condições para que o número de componentes simples da álgebra F_G seja minimal e encontramos os idempotentes centrais primitivos quando a ordem do grupo é igual a p^l^, onde p e l são números primos distintos. Posteriormente, obtemos condições necessárias e suficientes para que o número de componentes simples da álgebra F_G seja minimal no caso em que a ordem do grupo é igual a 2n. Finalmente, quando G=D_{p^}, o grupo diedral de ordem 2p^, obtemos duas decomposições da álgebra F_D_{p^}$ como soma direta de ideais à esquerda minimais, calculamos suas dimensões e pesos e mostramos que, em uma destas decomposições, os códigos à esquerda minimais não são equivalentes a códigos abelianos, dando uma resposta afirmativa para uma conjectura formulada por Sabin e Lomonaco em 1995.