Ozone technology as an alternative for reducing mycotoxin contamination in wheat products

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Alexandre, Allana Patrícia Santos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/11/11141/tde-15052018-132453/
Resumo: The objective of this study was to evaluate the reduction on the levels of mycotoxins in wheat products and by-products: deoxynivalenol (DON) in whole wheat flour, wheat bran and the efluent from wet milling of wheat flour, and zearalenone (ZEN) in wheat bran. Firstly, the reduction of DON contamination was studied on whole wheat flour, naturaly contaminated, and considering different moisture levels, as well as in wet milling effluent of wheat flour. Further, the impact of the ozonation process on the rheological properties of the processed flour was evaluated. Secondly, the wheat bran naturally co-contaminated with DON and ZEN was studied, considering the degradation of both mycotoxins and the impact of the ozonation process on the bran phenolic compound content and on the antioxidant capacity. The DON degradation in the whole wheat flour increased with both processing time and moisture content. By changing these process parameters, it was possible to obtain products in accordance with the legal limits of Brazil and the European Union, even starting with concentration 2-4 times higher than the legal limits. However, the rheological properties of the whole wheat flour were affected by the process, probably due to protein modifications. The DON concentration on the wet milling effluent was linearly reduced by the ozonation. In wheat bran naturally contaminated and in its equilibrium moisture, the ozonation reduced both DON and ZEN contamination. The degradation of ZEN was higher and faster than the degradation of DON, which could be explained by their molecular structures. It was also observed that the ozonation process did not negatively affect the phenolic compounds and the antioxidant capacity, which is high desirable from a nutritional point of view. Consequently, this work concludes that the ozonation process was effective in reducing DON and ZEN in different wheat products and efluent. It is noteworthy that the results obtained are promising for future studies and to elucidate the mechanism of action of ozone on mycotoxins and constituents of food.