Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
Diniz, Márcio Augusto |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/45/45133/tde-02112015-013658/
|
Resumo: |
Este trabalho propõe modelos Bayesiano semi-paramétricos para dados binários. O primeiro modelo é uma mistura em escala que permite lidar com discrepâncias relacionadas a curtose do modelo Logístico. É uma extensão relevante a partir do que já foi proposto por Basu e Mukhopadhyay (2000) ao possibilitar a interpretação da distribuição a priori dos parâmetros através de razões de chances. O segundo modelo usufrui da mistura em escala em conjunto com a transformação proposta por \\Yeo e Johnson (2000) possibilitando que a curtose assim como a assimetria sejam ajustadas e um parâmetro informativo de assimetria seja estimado. Esta transformação é muito mais apropriada para lidar com valores negativos do que a transformação de Box e Cox (1964) utilizada por Guerrero e Johnson (1982) e é mais simples do que o modelo proposto por Stukel (1988). Por fim, o terceiro modelo é o mais geral entre todos e consiste em uma mistura de posição e escala tal que possa descrever curtose, assimetria e também bimodalidade. O modelo proposto por Newton et al. (1996), embora, seja bastante geral, não permite uma interpretação palpável da distribuição a priori para os pesquisadores da área aplicada. A avaliação dos modelos é realizada através de medidas de distância de probabilidade Cramér-von Mises, Kolmogorov-Smirnov e Anderson-Darling e também pelas Ordenadas Preditivas Condicionais. |