Modelos bayesianos semi-paramétricos para dados binários

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Diniz, Márcio Augusto
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45133/tde-02112015-013658/
Resumo: Este trabalho propõe modelos Bayesiano semi-paramétricos para dados binários. O primeiro modelo é uma mistura em escala que permite lidar com discrepâncias relacionadas a curtose do modelo Logístico. É uma extensão relevante a partir do que já foi proposto por Basu e Mukhopadhyay (2000) ao possibilitar a interpretação da distribuição a priori dos parâmetros através de razões de chances. O segundo modelo usufrui da mistura em escala em conjunto com a transformação proposta por \\Yeo e Johnson (2000) possibilitando que a curtose assim como a assimetria sejam ajustadas e um parâmetro informativo de assimetria seja estimado. Esta transformação é muito mais apropriada para lidar com valores negativos do que a transformação de Box e Cox (1964) utilizada por Guerrero e Johnson (1982) e é mais simples do que o modelo proposto por Stukel (1988). Por fim, o terceiro modelo é o mais geral entre todos e consiste em uma mistura de posição e escala tal que possa descrever curtose, assimetria e também bimodalidade. O modelo proposto por Newton et al. (1996), embora, seja bastante geral, não permite uma interpretação palpável da distribuição a priori para os pesquisadores da área aplicada. A avaliação dos modelos é realizada através de medidas de distância de probabilidade Cramér-von Mises, Kolmogorov-Smirnov e Anderson-Darling e também pelas Ordenadas Preditivas Condicionais.