Detalhes bibliográficos
Ano de defesa: |
2009 |
Autor(a) principal: |
Castro Marquez, Carlos Ivan |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/3/3140/tde-26032009-172605/
|
Resumo: |
Uma das maiores restrições que existe atualmente no fluxo de projeto de CIs é a necessidade de um ciclo menor de desenvolvimento. Devido às grandes dimensões dos sistemas atuais, é muito provável encontrar no projeto de blocos IP, erros ou bugs originados na passagem de uma dada especificação inicial para seus correspondentes modelos de descrição de hardware. Isto faz com que seja necessário verificar tais modelos para garantir aplicações cem por cento funcionais. Uma das técnicas de verificação que tem adquirido bastante popularidade recentemente é a verificação funcional, uma vez que é uma alternativa que ajuda a manter baixos custos de validação dos modelos HDL ao longo do projeto completo do circuito. Na verificação funcional, que está baseada em ambientes de simulação, a funcionalidade completa (ou relevante) do modelo é explorada, aplicando-se casos de teste, um após o outro. Isto permite examinar o modelo em todas as seqüências e combinações de entradas desejadas. Na verificação funcional, existe a possibilidade de simular o modelo estimulando-o com casos de teste aleatórios, o qual ajuda a cobrir um amplo número de estados. Para facilitar a aplicação de estímulos em simulação de circuitos, é comum que espaços definidos por parâmetros de entrada sejam limitados em sua abrangência e agrupados de tal forma que subespaços sejam formados. No desenvolvimento de testbenches, os geradores de estímulos aleatórios podem ser criados de forma a conter subespaços que se sobrepõem (resultando em estímulos redundantes) ou subespaços que contenham condições que não sejam de interesse (resultando em estímulos inválidos). É possível eliminar ou diminuir, os casos de teste redundantes e inválidos através da aplicação de metodologias de modificação do espaço de estímulos de entrada, e assim, diminuir o tempo requerido para completar a simulação de modelos HDL. No presente trabalho, é realizada uma análise da aplicação da técnica de organização do espaço de entrada através de domínios de parâmetros do IP, e uma metodologia é desenvolvida para tal, incluindo-se, aí, uma ferramenta de codificação automática de geradores de estímulos aleatórios em linguagem SyatemC: o GET_PRG. Resultados com a aplicação da metodologia é comparada a casos de aplicação de estímulos aleatórios gerados a partir de um espaço de estímulos de entrada sem modificações.Como esperado, o número de casos de teste redundantes e inválidos aplicados aos testbenches foi sempre maior para o caso de estimulação aleatória a partir do espaço de estímulos de entrada completo com um tempo de execução mais longo. |